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Laser-cooled 9Be+ ions confined into two-dimensionally ex-
tended lattice planes were directly observed, and the images
used to characterize their structural phases. Five different
stable crystalline phases were observed, and the energetically
favored structure could be sensitively tuned by changing the
areal density of the confined ions. The experimental results
are in good agreement with predictions from theory for the
planar (infinite in two dimensions) one-component plasma.
Qualitatively similar structural phase transitions occur, or are
predicted to occur, in other experimentally realizable planar
systems.

The one-component plasma (OCP) has been an impor-
tant model of condensed matter in statistical physics for
over 30 years, and is used to describe such diverse sys-
tems as dense astrophysical matter (1) and electrons on
the surface of liquid helium (2). Laser-cooled, trapped
ions (3) are an excellent experimental realization of the
OCP. The phase structure of spatially homogeneous (in-
finite) (4) and cylindrical (5) (infinite in one dimension
only) OCPs have been explored previously. Here, images
of individual ions confined in two-dimensionally extended
lattice planes are presented, and are used to characterize
the structural phases with the observed structure agree-
ing well with the predictions of an analytic theory for the
planar OCP.

The OCP model consists of a single charged species
embedded in a uniform, neutralizing background charge.
In Paul (6) or Penning (6,7) traps, which are used to
confine charged particles, a (fictitious) neutralizing back-
ground is provided by the confining potentials. The ther-
modynamic properties of the infinite classical OCP are
determined by its Coulomb coupling parameter

Γ ≡ 1

4πε0

e2

aWSkBT
, (1)

which is the ratio of the Coulomb potential energy of
neighboring ions to the kinetic energy per ion. Here,
ε0 is the permittivity of the vacuum, e is the charge of

an ion, kB is Boltzmann’s constant, T is the temper-
ature, and aws is the Wigner-Seitz radius, defined by
4π(aws)

3/3 = 1/n0 where n0 is the ion density. The on-
set of short-range order for the infinite OCP is predicted
(8) at Γ ≈ 2, and a phase transition to a body-centered
cubic (bcc) lattice is predicted (8,9) at Γ ≈ 170. With
an OCP in a planar geometry (infinite in only two direc-
tions), boundary effects are predicted to cause the for-
mation of a variety of additional structural phases, such
as the hexagonal-close-packed (hcp) and face-centered-
cubic (fcc) phases (10–12). Qualitatively similar struc-
tural phase transitions occur, or are predicted to occur,
in other planar systems with varied interparticle interac-
tions, such as plasma dust crystals (13), colloidal suspen-
sions (14), semiconductor electron bilayer systems (15)
and hard spheres (16).

The crystallization of small numbers (total number
N<50) of laser-cooled ions into Coulomb clusters (17)
was first observed in Paul traps (18). With larger num-
bers of trapped ions, concentric shells (19) were directly
observed in Penning (20) and Paul traps (5,21). Re-
cently, Bragg diffraction has been used to detect bcc crys-
tals, the predicted infinite volume ordering, in large and
spherical (N>2 ×105, radius r0>60aws) ion plasmas con-
fined in a Penning trap (4).

We present measurements from direct images of the
central (r=0) structure of pancake-shaped (lenticular)
ion plasmas (aspect ratio α ≡ z0/r0 < 0.1, where 2z0

is the plasma center’s axial extent). The central region
has a “disk-like” geometry with constant areal density σ
(charge density per unit area projected onto the z = 0
plane), which facilitates comparison with planar theory.
We observe five different stable crystalline phases, find-
ing that the energetically favorable central structure can
be tuned by changing the central areal density σ0 of the
plasma. Both continuous and discontinuous structural
phase transitions are observed.

The 9Be+ ions were confined in a cylindrical Penning
trap (Fig. 1, inner trap diameter 40.6 mm) with a uni-
form magnetic field B=4.465 T in the ẑ-axis direction
to confine the ions radially. The ions were confined ax-
ially by a potential difference of V0 = −1.50 kV ap-
plied between the center and end electrodes of the trap.
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FIG. 1. Schematic side view of the cylindrical Penning trap
with its side- and top-view imaging optics. The insets show
the variables used to characterize the intra- and interlayer
structure. The side-view inset also shows the central region
of a lenticular ion plasma with three axial lattice planes.

Near the trap center this axial potential is quadratic and
has a value of 1/2(m/e)ω2

zz
2, where the axial frequency

ωz/2π = 978 kHz for 9Be+. The radial electric fields of
the trap as well as the ion space charge cause the ion
plasma to undergo an E×B drift and thus rotate about
the trap axis. In thermal equilibrium, this rotation is
at a uniform frequency ωr. The radial binding force of
the trap is determined by the Lorentz force caused by
the plasma’s rotation through the magnetic field. Thus,
low ωr results in a weak radial binding and a lenticular
plasma with a large radius. For 104 trapped ions with
ωr/2π = 68.5 kHz (typical for this work), the ion plasma
has a density of 2.1× 108 cm−3 with 2r0 ≈ 1.3 mm and
an aspect ratio α ≈ 0.05. The rotation frequency was
controlled by phase-locking the plasma rotation to an
applied “rotating wall” electric field (22). At low ωr, an
increase in ωr increases the plasma density and z0, thus
providing a way to sensitively adjust the central areal
density of the plasma.

The ions are cooled (3) by a laser beam propagating
along the z axis and tuned 10–20 MHz lower in fre-
quency than a hyperfine-Zeeman component of the 2s
2S1/2 → 2p 2P3/2 resonance at 313 nm with a natural
linewidth of 19 MHz. The laser power is approximately
50 µW and is focused at the ion plasma to a diameter of
about 0.5 mm. The theoretical cooling limit is 0.5 mK,

while an experimental upper bound of T < 10 mK has
been measured (23). For a density of n0 = 2×108 cm−3,
these give a range of 160 < Γ < 3150. A series of lenses
form side- and top-view images of the ions, with view-
ing directions perpendicular and parallel to the magnetic
field respectively, on either a gateable charge-coupled de-
vice (CCD) camera, or on an imaging photomultiplier
tube. The resolution of the optical systems is ≈ 4 µm,
while typical interparticle spacings are ≈ 20 µm.

The side-view image inset in Fig. 1, which shows the
central region of a lenticular ion plasma with three axial
lattice planes, is representative of the flatness and radial
extent (<10% of r0) of this region. At large radius, cur-
vature of the planes can cause the side-view images of
axial plane positions to blur. This effect was prevented
in the measurements reported here by using clouds with
sufficient amounts (up to 50%) of non-fluorescing impu-
rity ions. Because these heavier-mass ions are centrifu-
gally separated to larger radii than the 9Be+, the regions
of the plasma where curvature begins to be significant
can be filled with these ions, which are sympathetically
cooled by the 9Be+ (24).

With good alignment of the trap with the magnetic
field (<10−3 radians), the ion plasma rotation is phase-
locked with the “rotating wall” perturbation (22). Direct
observation of the rotating ion structures was achieved
for the first time by gating the top-view CCD camera
synchronously with the “rotating wall” perturbation for
gate times brief (< 2%) relative to the plasma rotation
period. Total exposure times of ≈ 3× 104 rotation peri-
ods were used in typical images (Fig. 2). For our study
of the ion lattice structure we limited our analysis to the
central region, where strong localization and regular or-
dering of the ions is observed. At larger radius we observe
an increased blurring due to the plasma rotation, occa-
sional lattice distortions, and ultimately the transition to
the regions filled by heavier-mass ions.

The observed structure of the central crystallized re-
gion depends on the central areal density σ0 of the
plasma. Within a layer, the lattice is characterized by
the primitive vectors a1 and a2 (which are observed to
be equal in magnitude, |a1| = |a2| ≡ a), or equivalently
by a and the angle θ (≤ 90◦) between the primitive vec-
tors. The interlayer structure is characterized by the ax-
ial positions zn of the n lattice planes (measured by the
side-view camera) and the interlayer displacement vec-
tor cn between layers 1 and n. Hence, the equilibrium
(x, y) positions of ions in axial planes 1 and n are given
by R1(i, j) = ia1 + ja2 and Rn(i, j) = ia1 + ja2 + cn,
where i, j are integers.

Three different types of intralayer ordering are ob-
served: hexagonal (θ = 60◦), square (θ = 90◦) and
rhombic (90◦ > θ ≥ 65◦). The square and rhombic layers
stack in a staggered fashion, with upper ions immediately
above the centers of the parallelograms below, resulting
in an interlayer displacement vector c2 = (a1 + a2)/2.
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FIG. 2. Top-view (x, y) images of the five structural phases
observed in the experiment, with lines showing a fit of the
central ions to the indicated structure.

Hexagonal layers similarly stack with ions above the cen-
ters of the triangles below, but there are two distinct ways
of doing this, 3c2 = a1 + a2 and 3c2/2 = a1 + a2. With
hcp-like stacking, the ions in every other plane lie directly
above each other (abab...), while with fcc-like stacking,
the ions in every third plane are so aligned (abcabc...).
When there are 3 or more hexagonal layers, both types
of stacking are observed.

The following sequence of phase structures, with lattice

parameters defined in Table 1, is observed as the central
areal density σ0 is increased from where order is first
observed: (I) 1-layer hexagonal→ (III) 2-layer staggered
square → (IV) 2-layer staggered rhombic → (V) 2-layer
staggered hexagonal. At a critical density a third layer
is formed, resulting in a (III) 3-layer staggered square.
The process then repeats with minor variations, such as
phase III becoming less common. We have followed here
the classifications used in previous theoretical studies of
quantum (15) and classical (12) electron bilayer systems.
Phase II, which is a stable phase of the bilayer systems
where the interlayer distance is fixed, is not listed here
because it is unstable for the planar OCP, where this
distance is determined by minimization of the system’s
energy.

We have performed an analytical calculation of the en-
ergies of these phase structures for the planar OCP (25).
The calculation minimizes the energy (26) of several par-
allel lattice planes that are infinite and homogeneous in
the (x, y) direction but are confined in the ẑ-direction
by a harmonic external electrostatic confinement poten-
tial φe = 1/2(m/e)ω2

zz
2. As this potential is identical

to the confinement potential of a Penning trap in the
α → 0 planar limit (27), this theory should predict the
structures observed in the central region of the lenticular
plasmas of the experiments. The predictions of this 2D
theory, which has no free parameters, was compared di-
rectly with our observations by identifying the σ of the
planar OCP with the directly measured central areal den-
sity σ0 of the oblate plasmas. For a quantitative analysis
of the observed lattice structure, we performed a least-
squares fit of the positions of the ions in the central region
to the relevant phases of Table I (lines in Fig. 2). Using
the best-fit values of the primitive vector length a and
the intralayer angle θ, and the observed number of lat-
tice planes n, the central areal density σ0 = n/(a2 sin θ)
was then calculated.

The agreement between the planar OCP theory and
experiment, with measurements taken on different plas-
mas with N< 104, is good (Figs. 3 and 4). As the central
areal density is increased the lattice planes move further
apart axially (Fig. 3). Eventually it becomes energeti-
cally favorable to form an additional lattice plane. The
symbols indicate whether the lattices had an interlat-
tice displacement vector c2 characteristic of the hexag-
onal phases (circles) or the square and rhombic phases
(squares). However, although the phase VFCC is pre-
dicted to be slightly more energetically favorable than
phase V, we rarely observed VFCC (∼ 5% of the time).
These and other minor discrepancies from theory may
be due to the finite radial extent of the ion plasma; we
note that we observe a similar preference for hcp stack-
ing in molecular dynamics simulations of small (N=3000)
lenticular ion plasmas.

For the dependence of the angle θ (between the prim-
itive vectors a1 and a2) on central areal density σ0 (Fig.
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FIG. 3. Interlayer structure (plane axial positions and
displacement vectors) of the central region as a function
of normalized central areal charge density. The lines
are predictions from theory, and the symbols are experi-
mental measurements. Lengths have been normalized by
aws2D = (3e2/4πε0mω

2
z)

1/3 = 10.7 µm, which is the
Wigner-Seitz radius in the planar limit.

4), the general trend is that when a new lattice plane
is formed, θ changes discontinuously from ≈ 60◦ to a
higher value. As σ0 of the crystal is further increased,
θ smoothly decreases to ≈ 65◦ until there is a second
discontinuous transition to a hexagonal structure. This
second transition has been predicted to become continu-
ous, with θ assuming all values 60◦ ≤ θ ≤ 90◦, in liquid
(Γ < 80) bilayer systems (28). The lines indicate the
minimum energy structures predicted by the 2D theory.
At central areal charge densities near phase boundaries,
both phases can be observed. In these regions, the phase
which materializes after the crystal is formed is initially
random, but tends to persist if the ions are not heated.
Where there was not a strong preference for one phase
over the other, we plot both.

Like most materials, the hexagonal and square phases
contract in lateral directions when elongated. However,
the rhombic phase shows quite different behavior because
the intralayer angle θ strongly depends on the ẑ-axis
strain: one rhombus diagonal contracts and the second
expands when the rhombic phase is elongated in the ẑ-
axis direction. The dimensional change for the latter
diagonal corresponds to a negative value of the Pois-
sons ratio (which is the ratio of the lateral contraction
to the longitudinal elongation). The present experimen-
tal observations substantially expand the mass density
range over which negative Poissons ratios have been es-
tablished, from ∼ 10 g/cm3 for cubic metals (29) and ∼
0.1 g/cm3 for reentrant foams (30) to ∼ 10−15 g/cm3 for
the present ion crystals.
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FIG. 4. Intralayer angle θ of the central region as a function
of central areal charge density. The lines are predictions from
theory and the symbols are experimental measurements from
the same data sets which were used in Fig. 3. Representative
error bars are included with some of the measurements.
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TABLE I. Primitive and interlayer displacement vectors in (x, y) plane for the observed phases. The primitive vector a1

defines the x̂ direction, and |a1| = |a2| ≡ a. Dashes, not applicable.

Phase Symmetry Stacking a1 a2 c2 c3

I hexagonal single plane (a, 0) (a cos 60◦, a sin 60◦) – –
III square staggered (a, 0) (0, a) (a1+a2)/2 (0, 0)
IV rhombic staggered (a, 0) (a cos θ, a sin θ) (a1+a2)/2 (0, 0)
V hexagonal hcp-like (a, 0) (a cos 60◦, a sin 60◦) (a1+a2)/3 (0, 0)
VFCC hexagonal fcc-like (a, 0) (a cos 60◦, a sin 60◦) (a1+a2)/3 2(a1+a2)/3

6


